FISICA/MENTE

REATTORI NUCLEARI

A FUSIONE

Roberto Renzetti

 

 

                    La fusione nucleare, come sappiamo, si realizza in natura sulle stelle ed è stata realizzata dall'uomo in modo terribilmente distruttivo nelle bombe H che vedremo nella sezione "armi nucleari". Sono molti anni che si lavora alla realizzazione di un reattore nucleare che renda possibile l'uso pacifico di energia da fusione. Ancora non ci si riesce ma si deve continuare perché, mediante questa tecnica, sarebbe possibile sfruttare fonti energetiche praticamente inesauribili esistenti sulla Terra, come ad esempio l'idrogeno.

                    I problemi che si pongono sono enormi ed a tali problemi si sommano le inerzie dei governi nazionali che lesinano il denaro ed il freno delle multinazionali energetiche, particolarmente quelle del petrolio. I problemi tecnico-scientifici  nascono da questioni primordiali molto comprensibili a tutti. Un fornello a gas ci dà una fiamma di circa 400 °C. Sopra questa fiamma, per cucinare, disponiamo una pentola, ad esempio, di alluminio che fonde a meno di 700 °C. Pensiamo ora che la fusione nucleare sul Sole si realizza a circa 6 000 °C (e con pressioni elevatissime) e che, sulla Terra, per realizzarla occorrono temperature che oscillano intorno ai 100 milioni di gradi (più di sei volte la temperatura all' interno del Sole). Ecco questo cenno di dati dovrebbe far capire l'enorme difficoltà prima di raggiungere quelle folli temperature e poi di contenerle in un qualche recipiente. Nonostante le difficoltà, queste cose si sono fatte, resta da realizzare, simultaneamente svariate altre condizioni che tenterò di illustrare.

 

UNA CRONOLOGIA MINIMA

                    Gli avvenimenti importanti sulla strada della fusione sono cronologicamente elencati di seguito:
  •  

     fine anni '20: Atkinson e Houtermans avanzano l'idea che il Sole possa brillare a seguito di reazioni termonucleari; dieci anni dopo fu postulato il ciclo di produzione energetica mediante fusione nucleare nel Sole;
  •  

    nel 1923 Rutherford, Walton e Cockcroft osservarono la cattura di un protone da parte di un atomo di Litio 7, e la disintegrazione di quest'ultimo in due particelle alfa con liberazione di energia;
  •  

    nel 1925 Rutherford, Oliphant ed Harteck ottennero la fusione di due deutoni che si trasformarono in un Elio 3 ed un neutrone o in un Trizio ed un protone, liberandosi in ambedue i casi, grande energia;
  • nel 1951 una bufala di Juan Perón, che aveva affermato di avere una centrale a fusione nucleare in funzione, spinse l'astrofisico Lyman Spitzer di Princeton a studiare il problema;

  •  

    nel 1951 i fisici sovietici Andrej Sacharov ed Igor Tamm disegnarono quell'oggetto che più tardi si chiamerà tokamak;
  •  

    da questo momento (ma anche prima) cade il silenzio su queste ricerche. Si lavora su di esse a fini militari ... la bomba H ha già debuttato e suoi perfezionamenti bussano alla porta. Siamo in piena guerra fredda!
  •  

    1958, Ginevra. Vi è la Conferenza Atomi per la Pace. Si capì che era necessario studiare più a fondo i plasmi e si dette il via a studi di base che occuparono gli anni successivi;
  •  

    nel 1968 il tokamak sovietico riuscì a mostrare una possibile strada del confinamento magnetico ed avviò il mondo su macchine dello stesso tipo;
  •  

    negli anni '70 la fusione entrò nella big science per la mole dei finanziamenti che richiedeva. Si capì che per andare avanti occorrevano piani di collaborazione internazionale;
  •  

    nel 1978 quella che allora si chiamava Comunità Europea mise in piedi uno dei progetti di studio di fusione più ambiziosi, il JET (Joint European Torus ovvero Toro europeo insieme) che si iniziò a costruire a Abingdon in Gran Bretagna. Nel giugno 1983 il JET produsse i primi plasmi e dette mostra di funzionare fino agli esperimenti del 1991 che con successo fusero deuterio e trizio;
  •  

    nel 1978 il PLT (Princeton Large Torus) statunitense ha prodotto plasmi a doltre 60 milioni di gradi. Verso la metà degli anni '80 iniziarono gli esperimenti con il TFTR (Tokamak Fusion Test Reactor ovvero: reattore per provare la fusione di tipo tokamak) particolarmente con mescole di deuterio e trizio (1993).
  •  

    dal 1988 in Giappone si sono fatti esperimenti avanzati con il JT-60, tokamak di grandi dimensioni.
  •  

    dal 1989 è entrato in funzione il tokamak FTU (Frascati Tokamak Upgrade) nei Laboratori Nazionali di Frascati. Questa macchina è il risultato di ricerche iniziate nel 1976.

 

QUALCHE DETTAGLIO SUI TOKAMAK

                    La prima macchina che ha studiato e tentato di realizzare la fusione in scala che sarebbe potuta diventare commerciale è ex sovietica e prende il nome di TOKAMAK, acronimo russo delle parole che la descrivono: TOroidalnaya KAmera MAgnitnaya Katushka, ovvero macchina a camera toroidale e avvolgimento magnetico. Fu sviluppata all'Istituto dell'Energia Atomica di Mosca alla fine degli anni '60. Il toro è una figura geometrica che deriva il suo nome dal latino torus = cintura, cordone  (da non confondere con taurus, da cui il più familiare toro del mondo animale). La figura geometrica toro (Figura 0) ha quindi l'aspetto di un tubo chiuso 

Figura 0

ad anello che è proprio la forma che generalmente ha la camera centrale delle macchine che lavorano intorno alla fusione nucleare (il contenitore dell'anello verde di Figura 1 che rappresenta molto schematicamente un Tokamak).

Figura 1

            Dentro la camera toroidale vi è inizialmente un gas che deve essere portato a temperature gigantesche. Ed un gas, che ha la proprietà di ionizzarsi a temperature ordinarie, si ionizza completamente (i suoi atomi perdono tutti gli elettroni) alle temperature a cui si lavora. un gas in condizioni di totale ionizzazione si chiama plasma. Per far crescere la temperatura di quel gas si usa un sistema che ricorre a giganteschi campi magnetici. Sottoponendo un plasma a tali campi, si restringe in un toro  a sezione sempre più piccola con due effetti: da una parte ci si allontana dalle pareti del contenitore evitando il contatto con alte temperature, dall'altra si portano sempre più vicini tra loro i nuclei del gas da fondere. Naturalmente quanto dico è assolutamente banalizzato. I plasmi possono essere le miscele di nuclei più favorevoli alla fusione, ad esempio deuterio e trizio. In questo caso abbiamo a che fare con la coppia di elementi che ha bisogno della più bassa temperatura di innesco, circa 50 milioni di gradi centigradi. Il contenitore di tale elevata temperatura sarà, come accennato, il campo magnetico. Ma vi è un altro criterio cui bisogna rispondere per ottenere la produzione di energia da fusione, si tratta del criterio detto di Lawson. Durante il tempo di contenimento mediante campo magnetico del plasma scelto, l'energia liberata dalla fusione, ad una temperatura più alta di quella d'innesco, dovrebbe almeno essere uguale alla somma dell'energia persa attraverso processi radiativi più l'energia necessaria ad elevare l'energia termica del plasma alla temperatura considerata. In definitiva i parametri importanti per ottenere la fusione sono tre: la temperatura caratteristica di fusione (temperatura di ignizione) per un dato plasma (che si ottiene dall'equazione del bilancio energetico tra la potenza prodotta dalla fusione e le perdite di potenza dovute a vari fattori); la densità del plasma ed il tempo di confinamento. In pratica, disponendo di un plasma ad una data densità, esso dovrà essere compresso  magneticamente per un tempo minimo necessario a raggiungere la temperatura in cui iniziano a fondere i nuclei del plasma medesimo. A questo punto sarà la macchina a dare energia attraverso le reazioni di fissione nucleare.

            Per raggiungere la temperatura di ignizione si deve scaldare convenientemente il plasma per differenti vie:

1 - riscaldamento ohmico che consiste nello ionizzare la miscela (ad esempio) di deuterio e trizio ottenendo un plasma e quindi agendo sui campi magnetici rapidamente variabili che inducono un campo elettrico il quale, a sua volta, origina una corrente nel plasma che lo riscalda;

2 - riscaldamento per compressione magnetica (o adiabatica) che si ha aumentando bruscamente il campo magnetico toroidale, fatto che fa aumentare l'energia cinetica e quindi la temperatura del plasma; un campo elettrico toroidale mantiene una corrente elettrica, pure toroidale, che fluisce nel plasma e questa corrente, a sua volta, genera una componente del campo magnetico che è poloidale  (per questo tipo di riscaldamento si veda Figura 3);

3 - riscaldamento per pompaggio magnetico che si origina facendo variare periodicamente il campo magnetico;

4 - riscaldamento attraverso  microonde che devono avere la stessa frequenza con cui vibrano le particelle del plasma;

5 - riscaldamento per iniezione di fasci di atomi neutri (che possono penetrare nel plasma senza subire disturbo dalle cariche elettriche che lo costituiscono. Nel penetrare nel plasma questi fasci neutri si ionizzano e trasferiscono parte della loro energia cinetica al plasma per urto. Tale procedimento può essere applicato in combinazione con altri;

 

6 - riscaldamento per onde  d'urto è quello che si ottiene attraverso raggi laser di elevata potenza che vanno ad incidere sul plasma (si può anche operare attraverso elettroni accelerati o ioni pesanti). 

Alcuni di questi metodi di riscaldamento sono illustrati nella Figura 2:

plasma heating

Figura 2

              Questa temperatura elevata, tendenzialmente, lavora per separare i nuclei degli atomi del plasma, essendo questi carichi tutti positivamente. Occorre quindi restringere lo spazio a disposizione del plasma mediante un suo confinamento che, nel caso in discussione, è magnetico (vi è poi da considerare un altro tipo di confinamento, quello inerziale).

                   C'è da osservare che, mentre fino ad ancora poco tempo fa (anni '80)  si lavorava in modo semiempirico per modificare la geometria della macchina (o delle macchine), nei suoi infiniti parametri, proprio da allora iniziano delle teorie elaborate che ci fanno sperare sempre più nell'entrata in funzione commerciale di tali macchine. In Figura 3 vi è uno schema ancora più dettagliato di quello di Figura 1 di un tokamak. Nella Figura 4 vi è invece il dettaglio dei campi elettrici e magnetici dentro il plasma.

Figura 3

Figura 4

                   Per rendere conto delle dimensioni delle macchine che si stanno costruendo e con le quali si sperimenta (si tenga conto che il volume del plasma con cui si opera oscilla intorno ai 150 metri cubi), è utile la Figura 5, in cui è rappresentato l'interno del tokamak JET. Si noti che in questa macchina la figura toroidale ha già subito modificazioni importanti nella geometria. E' anche interessante vedere l'immagine della macchia precedente con il plasma riscaldato al suo interno (Figura 6).

Figura 5

Figura 6

La Figura 7 mostra invece la stessa macchina vista dall'esterno e collegata ad una montagna di apparecchiature.

Figura 7

                    Con il progredire degli studi e con il variare delle tecniche e delle geometrie le camere toroidali si sono suddivise in almeno tre differenti tipi, a seconda del procedimento utilizzato per generare lo sviluppo ad elica del campo magnetico intorno al plasma:
  • i tokamak veri e propri (Figura 8);

  • gli stellatori (Figura 9);

  • macchine per costrizioni di campo inverso (reversed field pinch - Figura 10).

 

Nelle figure seguenti sono mostrate schematicamente le linee di forza del campo magnetico agenti sul plasma nei tre casi:

Figura 8

La struttura dei campi magnetici in un tokamak, già visti (Figure 3 e 4).

Figura 9

In uno stellatore la forma ad elica delle linee del campo magnetico si ottiene mediante una serie di avvolgimenti che, a loro volta ed in alcuni casi, possono avere forma elicoidale. Poiché lo stellatore non richiede il passaggio di una corrente attraverso il plasma per generare il campo magnetico, non ha trasformatore e può quindi funzionare a regime con continuità.

Figura 10

Le macchine a costrizione mediante campo inverso sono dei tokamak in cui circola una corrente molto elevata che provoca una riorganizzazione interna al plasma dei campi magnetici tale da invertire la direzione del campo toroidale nella parte centrale del plasma. Le componenti toroidali e poloidali del campo hanno intensità dello stesso ordine di grandezza.

                    Fin qui abbiamo parlato del solo confinamento magnetico. Resta ora solo da accennare al confinamento inerziale.

                    In questo caso si tratta di far interagire fasci laser (con energia vicina ai 5 MJ) o elettroni accelerati contro una piccola pastiglia (circa 1,5 millimetri di raggio)  di plutonio (circa 0, 200 grammi) circondata da una cappa sferica (di meno di 2 millimetri di spessore) di un composto del deuterio contenente impurità di trizio (ricordo che la reazione di fusione Deuterio - Trizio  è la più facile da realizzare ed è  anche la più efficiente al fine della produzione di energia). L'urto tra il fascio laser e la pastiglia origina la compressione del plutonio portandolo ad una densità di circa 250 volte quella iniziale e della buccia sovrapposta portandola a densità di oltre 4000 volte la iniziale. In linea di principio il plutonio nelle condizioni accennate origina una microesplosione nucleare (fissione) che eleva le temperature al punto da innescare la fusione nella cappa che lo ricopre. La superficie della sferetta evapora  e, secondo il principio di azione e reazione, il combustibile viene compresso e riscaldato. Si realizza così la condizione di altissima densità del plasma anche se per tempi di confinamento molto brevi. Le figura 11 e 12 mostrano, rispettivamente, l'esterno e l'interno di una camera in cui si realizza il confinamento inerziale.

Figura 11

Camera di combustione dell'istallazione laser-fissione-fusione Nova. Lawrence Livermore Laboratory, USA.

Figura 12

Interno della camera di combustione dell'istallazione laser-fissione-fusione Nova. Lawrence Livermore Laboratory, USA.

                    Questo processo è interessante ma abbisogna ancora di laser di energia sufficientemente elevata. In ogni caso la Figura 13 mostra un possibile arrangiamento che permetterebbe lo sfruttamento della fusione prodotta in questo modo.

 

Figura 13

                    Il modo, invece, di estrazione del calore, e quindi dell'energia prodotta dalla fusione, con un sistema di confinamento magnetico è mostrato nelle figure 14 e 15.

Figura 14

Figura 15

                    Per concludere, nelle figure 16 e 17 sono riportate le foto delle principali macchine per la fusione in studio nel mondo.

Figura 16

Figura 17

                    Altri progetti, ancora più avanzati, sono oggi in studio (PBFA 2, la macchina Z, ITER, DEMO, ...) e, presto o tardi li descriverò. Si spera di avere presto dei risultati (comunque non prima del 2040) che possano permettere l'utilizzo commerciale dell'energia da fusione. In linea di principio i problemi ambientali dovrebbero essere minimi a fronte di disponibilità di combustibile praticamente infinita. 

                    Un breve commento in chiusura lo merita il progetto internazionale ITER. 

"""Mentre esiste un discreto accordo (anche se non unanime) tra i ricercatori su come procedere, ed è stato anche redatto un progetto, la quantità di risorse necessaria ha dissuaso i singoli stati dall'imbarcarsi in questa impresa. Viceversa, è stato raggiunto un consenso sul fatto che questo progetto, denominato ITER (International Thermonuclear Experimental Reactor), dovrà essere realizzato sotto forma di collaborazione internazionale.

Purtroppo, il raggiungimento di un accordo in materia si è dimostrato difficile. In particolare nel 1998, quando il progetto era praticamente pronto, gli USA si sono ritirati, e questo ha portato a un sostanziale congelamento delle attività. L'anno scorso gli Stati Uniti hanno cambiato idea, e questo ha portato nuovo impulso. Attualmente si stanno svolgendo dei negoziati tra i partecipanti all'impresa, cioè Europa, USA, Giappone, Russia, Cina e Corea del Sud, per suddividere i costi e decidere i dettagli "politici", primo fra tutti la localizzazione del sito dell'esperimento. La scelta tra i due candidati, Cadarache nel sud della Francia e Rokkasho in Giappone, si sta rivelando non facile, non per ragioni tecniche ma per rivalità politiche, alle quali hanno contribuito le recenti vicende della guerra irachena e i conseguenti contrasti tra la Francia e gli USA (che difatti appoggiano il sito giapponese). E' da notare comunque che il costo totale del progetto, che è di 4,7 miliardi di Euro, pur nella sua rilevanza ammonta ad appena lo 0,5% delle spese militari mondiali annuali. Ma quali sono le prospettive di questa tecnologia? Iniziamo col dire che si prevedono tempi molto lunghi perché sia effettivamente possibile immettere in rete elettricità prodotta da centrali a fusione. La sola costruzione di ITER, una volta che siano risolti i problemi negoziali, durerà 8 anni, a cui faranno seguito 10 anni di sperimentazione. Di seguito dovrebbe essere possibile costruire un vero reattore dimostrativo, al quale seguiranno le centrali commerciali. Complessivamente, sembra molto difficile che si arrivi a uno sfruttamento commerciale della fusione prima dell'anno 2040. Va notato che i problemi legati al progressivo esaurimento delle riserve di petrolio e metano e al cambiamento climatico indotto dall'uso di questi combustibili si manifesteranno ben prima
.""" 


[Emilio Martines, ricercatore CNR, Redazione Cunegonda Italia]

 

BIBLIOGRAFIA

1 - Consorcio Fusion Expo - Dominar la energia de las estrellas - Opuscolo illustrativo dei programmi di fusione, 1995.

2 - B. Coppi, J. Rem - Il Tokamak e la fusione termonucleare controllata - Le Scienze n° 50, 1972.

3 - AA. VV. - Energy sources & development - Simposio internacional sobre fuentes de energia y desarrollo - Moneda y Credito, Madrid 1977.

4 - E. Bertolini - Il progetto JET - Il Saggiatore 5/6, 1996.

5 - (a cura di Carlo Bernardini) - Le risorse energetiche - Quaderni Le Scienze n° 129, dicembre 2002.

 

 

 

Torna alla pagina principale